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Abstract. Using the parallel/orthogonal space method, we calculate the planar two-loop three-point dia-
gram and two rotated reduced planar two-loop three-point diagrams. Together with the crossed topology,
these diagrams are the most complicated ones in the two-loop corrections necessary, for instance, for the
decay of the Z0 boson. Instead of calculating particular decay processes, we present a new algorithm which
allows us to perform arbitrary next-to-next-to-leading order (NNLO) calculations for massive planar two-
loop vertex functions in the general mass case. All integration steps up to the last two are performed
analytically and will be implemented under xloops as part of the Mainz xloops-GiNaC project. The last
two integrations are done numerically using methods like VEGAS and Divonne. Thresholds originating from
Landau singularities are found and discussed in detail. In order to demonstrate the numerical stability of
our methods we consider particular Feynman integrals which contribute to different physical processes. Our
results can be generalized to the case of the crossed topology.

1 Introduction

Precision measurements at the LEP collider at CERN and
other colliders like e.g. SLC at SLAC, TEVATRON at
Fermilab and HERA at DESY have reached a precision
which has exceeded all expectations. This is true especially
for electron colliders [1–4]. At the moment the precision
of measurements related to the parameters of the Stan-
dard Model of electroweak interactions reaches values up
to O(10−4) [4]. At future colliders like the LHC or the ILC
(including GigaZ), further improvements are expected [3,
5–8].
Compared to this, theoretical predictions accomplish

this precision only in very few cases. To check the validity
of the Standard Model and to be able to draw conclusions
about ‘new physics’, progress in theoretical methods and
their application is necessary [2, 3]. The complexity of the
calculations and the number of the graphs which have to
be calculated within perturbation theory grows consider-
ably order by order. At second order only a few observ-
ables are calculated [9]. Still there is no method available
which allows for the (semi-)automatic calculation of arbi-
trary processes at this order. Much work has been done
on next-to-next-to-leading order (NNLO) calculations [10–
27].While for mixing QCD and electroweakO(ααs) NNLO
vertex corrections a few calculations were done several
years ago [17], for the evaluation of two-loop three-point di-
agrams in the generalmass case only the methods proposed
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in [28–30] have been used successfully in order to calcu-
late electroweak NNLO corrections [31]. With increasing
energy as it will be used at the ILC, radiative corrections
will become increasingly important. Therefore, there is still
need for independent methods to calculate general massive
two-loop vertex diagrams.
In this paper we present a new algorithm which allows

us to calculate NNLO corrections for general massive pla-
nar two-loop vertex functions as they arise in the Standard
Model of electroweak interactions using Feynman gauge,

e.g. for the effective weakmixing angle sin2 θlepteff [31, 32] oc-

curring in Z0→ l+l− and for other processes like Z∗→ tt̄.
Even though the calculation of particular physical pro-
cesses is not the subject of this paper, the new algorithm
enables us to perform such calculations. For our algorithm
we use the parallel/orthogonal space method [33], which
allows us to separate effects coming from inner momenta
from those of momenta of the outer particles of the process.
The benefit of the parallel/orthogonal space method

is the fact that the calculation stays close to the physical
process. The introduction of Feynman parameters and the
application of the Wick rotation which estrange the calcu-
lation from the physical process for other methods are not
necessary for the parallel/orthogonal space method. In-
stead, a decay process can be calculated in the rest frame of
the decaying particle. The introduction of Gram determi-
nants which might cause artificial divergences is not neces-
sary. The analytical integration leads to still rather simple
basic functions like logarithms and dilogarithms. For the
remaining numerical integration the integrand can be ana-
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lyzed at physical thresholds. Landau singularities are mir-
rored directly onto the parameters of the integrands. Fi-
nally, the method is totally independent of other methods
and therefore allows for an independent check.
Up to now, the parallel/orthogonal space method was

used successfully to evaluate the general massive scalar
integrals in the case of the planar topology [34] and in
the case of the crossed topology [35]. However, it was not
possible to evaluate two-loop three-point functions which
contain loop momenta in the numerator. The method pro-
posed in this paper allows one to calculate also tensor inte-
grals for the planar vertex topologies.
We present a tensor reduction which reduces the planar

and rotated reduced planar two-loop three-point topolo-
gies containing an arbitrary tensor structure to a set
of master integrals with strongly restricted numerator
structure [36]. As for most of the master integrals which
remain after tensor reduction there are already estab-
lished methods available [24–27], we do not give results
in these cases. The same is valid for particular mass
cases [10, 37–39] and for the UV-singular parts [36]. Effi-
cient methods for several cases including few masses have
been developed in [19–21]. We also do not dwell on the
calculation of massless diagrams for which other methods
are applied successfully (see e.g. [40]). As IR divergences
occur in this case, there is no systematic method avail-
able within the parallel/orthogonal space method, because
for each special case the subtraction has to be found
separately ‘by hand’ [41, 42]. Instead, we concentrate on
the most complicated part, namely the calculation of the
UV-finite parts of those master integrals which keep the
planar or rotated reduced planar topology after tensor
reduction.
Two-loop integration in four-dimensional space–time

needs eight integration steps. Using the parallel/orthogonal
space method, we can do six of them analytically using
different techniques. The last two integration steps are
done numerically. Because most of the integrations can
be performed analytically, the Landau singularities of the
Feynman diagrams can be related graphically to the in-
tegrands in the remaining two-dimensional integration
region. Using different algorithms, we demonstrate the nu-
merical stability.
The algorithm for the numerical calculation of the

last two integrations is developed and its reliability is
demonstrated. In addition, further exhaustive numer-
ical tests are done. While for the numerical integra-
tion programs like the Monte Carlo integration routine
VEGAS [43, 44] and the program Divonne of the library
CUBA [45] are used, the implementation of the algorithms
for the semi-automatic calculation in xloops [46–48] is
part of the work described in this paper. In the xloops-
GiNaC project developed by the members of the ThEP
working group in Mainz [49, 50], work on the automatic
generation of Feynman diagrams and their evaluation with
analytical and numerical means is in progress. For this
purpose the language for algebraic calculation GiNaC was
developed [51]. While most of the master two-loop inte-
grals not considered in this paper are already implemented
in xloops, the missing planar topologies will be added

in the course of the work introduced here. The complete
set of algorithms described in this paper is implemented
under xloops-GiNaC. However, the implementation of
parts of the algorithms for known topologies as mentioned
in Sect. 3.8 still has to be done. Because in this spirit the
implementation is not yet finished, the calculation of phys-
ical processes is not the subject of this paper but will be
presented in a future publication.
The paper is organized as follows. In Sect. 2 we intro-

duce the main tools of the analytical calculation associ-
ated with the parallel/orthogonal space method. The ten-
sor reduction procedure is explained in detail in Sect. 3 for
the non-reduced planar two-loop three-point diagram, and
modifications in the case of the rotated reduced planar di-
agrams arementioned and explained. The tensor reduction
leads to master integrals which are integrated analytically
in Sect. 4 up to the last two integrations. In Sect. 5 we
deal with the analysis of Landau singularities and thresh-
olds. Section 6 is devoted to the numerical integration. In
both sections we present examples to show the reliability
of our procedure. In Sect. 7 we give our conclusions. In Ap-
pendix A we deal with the integral basis.

2 Tools for the calculation

In this section we provide the reader with the tools neces-
sary for the calculation of massive two-loop tensor vertex
integrals. Most of the tools were already introduced in the
literature [33–35, 42, 52–54]. Therefore, we can be brief in
presenting these tools.

2.1 The parallel/orthogonal space method

The integrals we have to calculate are determined by the
two-momenta of the produced particles, p1 and p2. Because
the integrals are expressed in terms of covariant quan-
tities, we are free to decompose any loop momentum k
into two covariant vectors, kµ = kµ‖ +k

µ
⊥, where k‖ has

components in the parallel space which is the linear span
of the external momenta pi, while k⊥ is the orthogonal
complement with

∑
µ k
µ
⊥piµ = 0 with components in the

orthogonal space [10, 17]. For three-point functions we can
consider the process in the rest frame of the decaying par-
ticle. In this frame the two emerging particles are pro-
duced back-to-back, defining the z-axis1. In this frame the
representation

p1 = (E1; qz, 0, 0),

p2 = (E2;−qz, 0, 0),

p= p1+p2 = (E; 0, 0, 0) (1)

can be used, where p is the momentum of the decaying par-
ticle with E =E1+E2 and p

2 =E2. Accordingly, the loop
momenta k and l necessary for the description of the two-

1 The z-component will be written as the second component
of the four-vector in the following.
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loop integral are parameterized by [53]

k = (k0; k1,k⊥), l = (l0; l1, l⊥). (2)

The two-dimensional vectors k⊥ and l⊥ are represented
in polar coordinates, using the squared absolute values

s = k2⊥ = k
2
⊥ and t = l

2
⊥ = l

2
⊥ and two angles, the angle α

of k⊥ with the x-axis and the relative angle γ. We can
write

k⊥l⊥ = k⊥l⊥z =
√
st z, z = cos γ = cos(k⊥, l⊥). (3)

The choice of parallel and orthogonal subspaces itself
is Lorentz invariant, so that the calculation can still be
done in any Lorentz frame. The benefit of the paral-
lel/orthogonal space method (P/O-space method) is that
the contributions belonging to the orthogonal space can
be integrated out and we are left with the contributions in
parallel space only. The integration measure is accordingly
written as

∫

d4k

∫

d4l

= π

∫ +∞

−∞
dk0 dl0 dk1 dl1

∫ ∞

0

ds dt

∫ +1

−1

dz
√
1− z2

,

(4)

where the trivial integration over α has already been per-
formed.

2.2 The linearization

Using Feynman gauge, the denominators of integrals oc-
curring in two-loop vertex calculations contain up to six
propagator factors. A typical factor is given by

P1 = (k+p1)
2−m21+iη, (5)

where η > 0. In the P/O-space representation this propaga-
tor factor reads

P1 = (k0+E1)
2− (k1+ qz)

2−k2⊥−m
2
1+iη. (6)

If we replace k0 = k
′
0±k1, we obtain

P1 =(k
′
0+E1)

2±2k1(k
′
0+E1∓ qz)

− q2z−k
2
⊥−m

2
1+iη, (7)

where k1 no longer appears quadratically. This replace-
ment, also known as linearization, is allowed because the
integral for k0 ranges from −∞ to +∞. However, because
of the occurrence of the mixing propagator factor

P3 = (k+ l)
2−m23+iη, (8)

the signs for the linearizations in k and l are coupled. In
applications of this linearization we use the sign which is
the most appropriate for our aims. The benefit of the lin-
earization is that the integrals over k1 and l1 can then be
calculated by using the residue theorem.

2.3 The integration over z

The quantity z occurs only in the just-mentioned propaga-
tor factor P3. After linearization this propagator factor can
be written as P3 =A+Bz+iη, where

A=A(k1, l1)

= (k′0+ l
′
0)
2±2(k1+ l1)(k

′
0+ l

′
0)− (s+ t)−m

2
3,

B =−2
√
st. (9)

P3 occurs only once in the denominator (if at all). The re-
sulting integral

∫ +1

−1

dz
√
1− z2

1

A+Bz+iη
=

π
�
√
(A+iη)2−B2

=
π

�
√
(A+iη)2−4st

(10)

can be written in this closed form only if we make a con-
vention different from the usual one [10]. We stipulate that
the cut of the square root is located on the positive real axis
instead of the negative one. For this reason we have added

the star in �
√
(A+iη)2−B2 , which reminds one of the dif-

ferent cut. The occurrence of the modified square root has
consequences for the subsequent integrations, because in
closing paths for the residue theorem we have to avoid
crossing this cut. In order to find conditions for this, we
split the square root up into a product of two square roots
�
√
A±B+iη . If one of the radicands is equal to a positive
real number x, we are definitely crossing the cut. Written
in terms of k1 and l1, we obtain

(k1+ l1)
cut

=±
x− (k′0+ l

′
0)
2+m23+(

√
s∓
√
t)2− iη

2(k′0+ l
′
0)

. (11)

Note that the two undetermined signs are not correlated.

While the sign between
√
s and

√
t depends on which of

the two square roots is taken, the global sign of the right-
hand side is due to the sign of the linearization. Consid-
ering only the linearizations k0→k′0+ k1, l0→l

′
0+ l1, the

signs of the real and imaginary parts of the cut still de-
pend on the sign of (k′0+ l

′
0). If (k

′
0+ l

′
0) > 0, the cut is

located in the lower complex half plane. The real part
starts (for x= 0) at some finite value and runs to +∞, in-
dependent of which square root we selected. In order to
avoid the cut, we therefore have to close the integration
path for k1 or l1 in the upper complex half plane while for
(k′0+ l

′
0) < 0 we have to close it in the lower half plane.

The situation is opposite for the linearization with a minus
sign.

3 Tensor reduction

After having introduced the main tools for the calculation,
we can start with the calculation itself. The starting point
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Fig. 1.Momentum flow con-
vention for the planar two-
loop three-point function

is the tensor integral

T 0a0a1a2b0b1b2c

=

∫
ka00 k

a1
1 (k

2
⊥)
a2 lb00 l

b1
1 (l

2
⊥)
b2(k⊥l⊥z)

c

P1P2P3P4P5P6
d4k d4l, (12)

where

P1 = (k+p1)
2−m21+iη, P4 = (l−p1)

2−m24+iη,

P2 = (k−p2)
2−m22+iη, P5 = (l+p2)

2−m25+iη,

P3 = (k+ l)
2−m23+iη, P6 = l

2−m26+iη. (13)

If one is doing StandardModel calculations using Feynman
gauge, the powers are restricted by 0≤ a0, a1, 2a2 ≤ 3 and
0≤ b0, b1, 2b2, c≤ 4, as well as by 0≤ a0+a1+2a2+ c≤ 3
and 1 ≤ b0+ b1+2b2+ c ≤ 4. Nevertheless, the algorithm
introduced in this paper works for general powers. In Fig. 1
we show the momentum flow for the diagram in order to
define the momenta. For the indices ai, bi, c we allow non-
negative integer values. In performing the tensor reduction
the integrals are simplified to integrals with simpler numer-
ator and/or denominator structure.
For one-loop integrals the numerator can always be re-

moved by reduction procedures [55]. For two-loop integrals
this need not be the case. In general, there are not enough
propagator factors to cancel all components of the numera-
tor that occur. For the genuine planar two-loop three-point
function all numerator factors related to the second loop
momentum l can be canceled. This is not the case for the
reduced topologies, and it is not the case for the first loop
momentum k. The aim of the tensor reduction in general
is to reduce the numerator as far as possible so that the
integrations can be performed similar to what is done for
a trivial numerator [34]. The reduction procedure will be
explained in the following. The representation of the pro-
cedure by diagrams will show the topologies only. In this
spirit, plus signs like the one occurring in (19) have to be
understood as sums over diagrams with the same topology
but different factors and signs.

3.1 Cancelation of the mixed contribution

The first step in the cancelation procedure consists in can-
celing powers of the mixed factor (k⊥l⊥z). This factor oc-
curs also in the propagator factor P3. We can write

2k⊥l⊥z =N3−P3, (14)

where

N3 = k
2
0−k

2
1−k

2
⊥+ l

2
0− l

2
1− l

2
⊥+2k0l0−2k1l1−m

2
3+iη.
(15)

Used iteratively, we obtain

(k⊥l⊥z)
c =

(
N3

2

)c
−
c−1∑

i=0

N i3
2i+1
(k⊥l⊥z)

c−i−1P3. (16)

This iterative formula is necessary because the propagator
factor P3 occurs only once. As applied to the integral, we
obtain

∫
(k⊥l⊥z)

cd4k d4l

P1P2P3P4P5P6
=
1

2c

∫
N c3 d

4k d4l

P1P2P3P4P5P6

−
c−1∑

i=0

1

2i+1

∫
N i3(k⊥l⊥z)

c−i−1

P1P2P4P5P6
d4k d4l, (17)

where we have skipped all the other numerator factors for
convenience. The first part is the same planar integral with
a different numerator structure. However, the second part
no longer contains the mixing propagator factor P3. In-
stead, the diagram factorizes. In addition, we can conclude
that this vanishes if c− i−1 is odd. The reason is that the
integration over z is given by

∫ +1

−1

zc−i−1dz
√
1− z2

, (18)

which vanishes if the integrand is odd. Diagrammatically,
we can write

× (k⊥l⊥z)
c −→

+ (19)

After having canceled the mixing part it is irrelevant with
which loop momentum we continue. However, we always
start with the orthogonal space components.

3.2 Cancelation of k2
�

The factor k2⊥ = s occurs in the denominator factor P1. We
can write

k2⊥ =N1−P1,

N1 = k
2
0−k

2
1+2k0E1−2k1qz+E

2
1 − q

2
z−m

2
1+iη.

(20)
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The iterative formula

(k2⊥)
a2 =Na21 −

a2−1∑

i=0

N i1(k
2
⊥)
a2−i−1P1 (21)

can be used for the integral to obtain
∫
(k2⊥)

a2 d4k d4l

P1P2P3P4P5P6

=

∫
N
a2
1 d

4k d4l

P1P2P3P4P5P6
−
a2−1∑

i=0

∫
N i1(k

2
⊥)
a2−i−1

P2P3P4P5P6
d4k d4l.

(22)

Schematically this reduction reads

× (k2⊥)
a2 −→

+ (23)

In the following, only the diagrammatic reduction will be
shown.

3.3 Replacement of k1

In anticipation of the linearization, we replace the numera-
tor factors k1 by ∓((k0∓k1)−k0), using

k
a1
1 = (∓1)

a1

a1∑

i=0

(−k0)
a1−i

(
a1

i

)

(k0∓k1)
i. (24)

While the additional factors ka1−i0 will be canceled to-
gether with ka00 in the next step, the subsequent lineariza-
tion will replace (k0∓k1) by k′0.

3.4 Cancelation of k0

P1 and P2 are the only propagator factors that contain only
k and not l. We can combine these both to obtain

2Ek0 =N2+P1−P2, N2 = p
2
2−p

2
1−m

2
2+m

2
1. (25)

An iterative formula can be constructed as before; the re-
duction reads

×ka00 −→

+ + (26)

3.5 Cancelation of l2
�

In using

l2⊥ =N6−P6, N6 = l
2
0− l

2
1−m

2
6+iη (27)

we can cancel the factors l2⊥, ending up with the reduction
scheme

× (l2⊥)
b2 −→

+ (28)

3.6 Cancelation of l1

Different from the situation for the replacement of k1, we
have three propagator factors which do not contain k. In
this case the factors l1 can be canceled completely. We use

2qzl1 =N4+P4−P6, N4 = 2l0E1−p
2
1+m

2
4−m

2
6 (29)

to reduce powers of l1 according to the scheme

× lb11 −→

+ + (30)

3.7 Cancelation of l0

Finally, we can cancel the factors l0 as well, using

2El0 =N5+P5−P4, N5 = p
2
1−p

2
2−m

2
4+m

2
5. (31)

The reduction scheme reads

× lb00 −→

+ + (32)
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3.8 Summary of the reduction procedure

After performing the reduction procedure, we can collect
all the steps into a single one. All diagrams which are still
of the (original) planar topology after the reduction pro-
cedure have a numerator factor (k0∓k1) in different pow-
ers. The maximal power, i.e. the maximal value for α, is
given by a1+2a2+2c. The numerator factors of the dia-
grams with reduced topology are changed but not easier.
Nevertheless, because of the different topology, reduction
procedures which are known in the literature or which will
be explained in the following can be applied. Schematically
we write

×ka00 k
a1
1 (k

2
⊥)
a2 lb00 l

b1
1 (l

2
⊥)
b2(k⊥l⊥z)

c −→

× (k0∓k1)
α +

+ +

+ +

+ (33)

Denoting the topologies by T 0, T 1, . . . , T 6 according
to the canceled propagator factor, we can cite the following
references:

– Two-loop three-point functions with two-point subloop,
as they are given in our case by the topologies T 1

and T 2, can be calculated by using dispersion rela-
tions [24–26].
– The factorizing topology T 3 is calculated as a prod-
uct of one-loop topologies. These contributions may be
calculated using xloops [50] or similar packages like
SANC [56].
– The effective two-loop two-point topology T 6 can be cal-
culated using xloops [27].
– What is left are the rotated reduced planar topologies T 4

and T 5. They can be reduced in a similar manner as the
original planar topologies2. In the following section we

2 Because of historical reasons, these topologies are called ro-
tated reduced planar topologies. In the original reduced planar
topology the line crossing the triangle is going horizontally from
left to right, connecting the left-hand vertex with the middle of
the vertical line on the right.

will deal with these topologies and the necessary modi-
fications of the reduction procedure.

3.9 Modifications for the rotated reduced
planar topologies

For the rotated reduced planar topologies we assume
the same numerator factor as for the non-reduced one,
k
a0
0 k

a1
1 (k

2
⊥)
a2 l
b0
0 l
b1
1 (l

2
⊥)
b2(k⊥l⊥z)

c. The procedure is quite
the same as in the case discussed before. But, because one
of the denominator factors P4 and P5 is absent, it is not
possible to cancel the factors of l1 as in the previous case.
Instead, we anticipate the linearization as in the case of k1
(and with the same sign) in writing

l1 =∓ ((l0∓ l1)− l0) ⇒

l
b1
1 = (∓1)

b1

b1∑

j=0

(−l0)
b1−j

(
b1
j

)

(l0∓ l1)
j . (34)

Again, while the additional factors lb1−j0 will be can-
celed together with lb00 in the last step, the subsequent
linearization will replace (l0∓ l1) by l′0. However, this last
step makes the difference between the two topologies.
For the topology T 4 the denominator factor P4 is ab-

sent. However, we can obtain

2(E2± qz)l0 =N
′
5−P6+P5,

N ′5 =±2(l0∓ l1)qz−p
2
2−m

2
6+m

2
5. (35)

At this point the different signs for the linearization enter
the game.While we have designed the term (l0∓ l1) in such
a way that it can be combined with the factors from the
cancelation of l1, in order to obtain l0 we have to divide
by (E2± qz). However, if the second produced particle is
massless, p22 = 0, this factor will become zero. In order to
include also the massless case, we will prefer the lineariza-
tion l1 = l

′
1+ l0 for this topology, i.e. the upper sign. The

whole reduction procedure for the case of the topology T 4

reads

×ka00 k
a1
1 (k

2
⊥)
a2 l
b0
0 l
b1
1 (l

2
⊥)
b2(k⊥l⊥z)

c −→

× (k0−k1)
α(l0− l1)

β +

+ +

+ + (36)
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All the diagrams on the right-hand side except for the
first with maximal powers a1+2a2+2c for α and b0+
b1+2b2+2c for β are again members of the different sim-
pler topology classes which were mentioned in the previous
paragraph.
Looking at the topology T 5, the propagator factor P5 is

absent. In this case we can obtain a reduction formula from
combining P4 and P6 to obtain

2(E1∓ qz)l0 =N
′
4−P4+P6,

N ′4 =∓2(l0∓ l1)qz+p
2
2−m

2
4+m

2
6. (37)

In this case the linearization l1 = l
′
1− l0 (lower sign) is more

appropriate. The result of the reduction reads

×ka00 k
a1
1 (k

2
⊥)
a2 lb00 l

b1
1 (l

2
⊥)
b2(k⊥l⊥z)

c −→

× (k0+k1)
α(l0+ l1)

β+

+ +

+ + (38)

4 Integration of the master integrals

After having reduced the numerator of the integrand to
factors (k0∓k1)α in the case of the planar two-loop top-
ology and (k0∓ k1)α(l0∓ l1)β in the case of the rotated
reduced planar two-loop topologies, we can start to inte-
grate this set of master integrals T 0α , T

x
α,β . Before we do

so, we have to consider the occurrence of ultraviolet (UV)
divergences and their treatment in terms of appropriate
subtractions. As for the treatment of infrared (IR) diver-
gences, we refer the reader to [41] for the scalar case. In the
more general case, methods taken from [57] can be applied.
However, in this paper we consider only IR-finite examples.

4.1 UV divergences and subtraction procedure

The UV divergences can be subdivided into three classes:
divergences with respect to the two two-loopmomenta and
global divergences. It is quite obvious that if we have dk
propagator factors depending only on k, dl propagator fac-
tors depending only on l, dkl propagator factors depending
both on k and l, and a power knk lnl in the numerator, the

corresponding degrees of divergence in D space–time di-
mensions are given by

ωk = 2(dk+dkl)−nk−D,

ωl = 2(dl+dkl)−nl−D,

ω = 2(dk+dl+dkl)− (nk+nl)−2D. (39)

The two-loop integral is divergent in D dimensions, if at
least one of the degrees ωk, ωl, or ω is zero or negative. If
the degree of divergence is zero, this divergence is called
logarithmic divergence.
In order to calculate the integral, we first have to reg-

ularize it. We use dimensional regularization and write
D= 4−2ε. After that, integrals can be split off into a diver-
gent and a convergent part. While the convergent part can
be calculated for ε = 0, i.e. for D = 4 space–time dimen-
sions, the integrand of the divergent part is simpler but has
the same UV behavior. In an appropriate subtraction pro-
cedure, therefore, we subtract and add an integrand which
is simple enough to be integrated analytically (at least the
singular part) but has the same singularities as the inte-
grand itself in order to cancel the singularities. This sub-
traction procedure is found and will be formulated multi-
plicatively [36, 42]. The subtracted integrand contains the
subtraction factors

K(jk) =

jk∏

r=1

(

1−
Dk

Dk,r

)

, L(jl) =

jl∏

r=1

(

1−
Dl

Dl,r

)

,

(40)

with

Dk =

dk∏

i=1

(
(k+pk,i)

2−m2k,i+iη
)
,

Dk,r =

dk∏

i=1

(
(k+κrpk,i)

2−m2k,i,r+iη
)
,

Dl =

dl∏

i=1

(
(l+pl,i)

2−m2l,i+iη
)
,

Dl,r =

dl∏

i=1

(
(l+λrpl,i)

2−m2l,i,r+iη
)
, (41)

where pk,i, pl,i ∈ {±p1,±p2}, mk,i ∈ {m1,m2}, ml,i ∈
{m4,m5}, and mk,i,r,ml,i,r are subtraction masses which
have to be introduced artificially3. The degrees of diver-
gence for this subtracted integrand increase by jk and jl,
respectively, and thus may lead to integrals without sin-
gularities for arbitrary values for κr, λr ,mk,i,r, andml,i,r.
Finally, the limit κr, λr → 0 can be performed, leaving
the subtracted integral convergent and enabling the semi-
analytical calculation. Since the subtraction terms always
contain a two-point subloop, the singular part can be cal-
culated analytically. For the non-singular part one can use

3 In the following we will simplify the indices according to the
special cases.
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ε = 0 [24–26]. In the end, the sum of subtracted integrals
and subtraction terms have to be independent of the sub-
traction masses. In the following we will deal with the
subtracted integrals only.

4.2 Subtraction for the planar topology

The reduction procedure explained in the previous section
leads to the integrals

T 0α =

∫
(k0∓k1)α

P1P2P3P4P5P6
dDk dDl. (42)

The degrees of divergence can be calculated in four space–
time dimensions,

ωk = 2−α, ωl = 4, ω = 4−α. (43)

There are no subdivergences in l, i.e. divergences caused
by the integration over the loop momentum l. However, for
α ≥ 2 we have to subtract subdivergences in k. We choose
jk = α−1 and multiply the integrand in (42) by

K(jk) =

jk∏

i=1

(

1−
P1P2

P1,iP2,i

)

, (44)

where P1 = (k+p1)
2−m21+iη and P2 = (k−p2)

2−m22+
iη are given in (13). The modified propagator factors read

P1,i = (k+κip1)
2−m21,i+iη,

P2,i = (k−κip2)
2−m22,i+iη. (45)

Note that each of the subtraction factors in (44) improves
the degree of divergence at least by 1 because by power
counting the denominator is given by k4 and terms of
lower order in k, while the numerator starts with k3. The
massesm1,i,m2,i of the subtraction can be chosen arbitrar-
ily. However, in order to avoid the introduction of spurious
IR singularities and squared propagator factors in the de-
nominator, the subtraction masses are usually chosen to
be non-zero and different from the physical ones and from
each other [42]. Furthermore, in order not to introduce new
thresholds, they should be larger than the masses of the
decaying particles. On the other hand, they should not be
too large because of the possible occurrence of numerical
instabilities.

4.3 Integration for the planar topology

After the linearization k0 = k
′
0+k1, in the P/O-space rep-

resentation the propagator factors are given by

P1 = 2(k
′
0+E1− qz)k1+(k

′
0+E1)

2− q2z− s−m
2
1+iη,

P2 = 2(k
′
0−E2− qz)k1+(k

′
0−E2)

2− q2z− s−m
2
2+iη,

P1,i = 2 (k
′
0−κi(E1− qz)) k1+(k

′
0+κiE1)

2

−κ2i q
2
z − s−m

2
1,i+iη,

P2,i = 2 (k
′
0−κi(E2+ qz)) k1+(k

′
0−κiE2)

2

−κ2i q
2
z − s−m

2
2,i+iη. (46)

In the case of the (non-reduced) planar diagram where
both linearizations are possible, we select the linearizations
k0 = k

′
0+k1 and l0 = l

′
0+ l1 for convenience. The propaga-

tor factors which are linear expressions in k1 can be written
in closed-form expressions

P1 = θ1k1+ ξ1− s+iη, P1,i = θ1,ik1+ ξ1,i− s+iη,

P2 = θ2k1+ ξ2− s+iη, P2,i = θ2,ik1+ ξ2,i− s+iη.
(47)

Because the parameters κi can take arbitrary values, the
denominator of K(jk) in (40) together with the factors
P1 and P2 from the integrand consists of different linear
factors.
Integrating over k1, the integration path [−∞,+∞] can

be closed in the upper or lower complex half plane, and
Cauchy’s theorem can be applied. The decision for one of
these paths depends on the sign of the linearization and on
the sign of (k′0+ l

′
0) (cf. (11) and its discussion). The poles

are given by the (different) zeros of the propagator factors
present in the calculation; the residues are given by

Res

[
1

P1P2

jk∏

i=1

(

1−
P1P2

P1,iP2,i

)

;P1 = 0

]

=
1

P2

∣
∣
∣
∣
∣
P1=0

,

Res

[
1

P1P2

jk∏

i=1

(

1−
P1P2

P1,iP2,i

)

;P2 = 0

]

=
1

P1

∣
∣
∣
∣
∣
P2=0

,

Res

[
1

P1P2

jk∏

i=1

(

1−
P1P2

P1,iP2,i

)

;P1,j = 0

]

=−
1

P2,j

jk∏

i=1
i�=j

(

1−
P1P2

P1,iP2,i

) ∣
∣
∣
∣
∣
P1,j=0

,

Res

[
1

P1P2

jk∏

i=1

(

1−
P1P2

P1,iP2,i

)

;P2,j = 0

]

=−
1

P1,j

jk∏

i=1
i�=j

(

1−
P1P2

P1,iP2,i

) ∣
∣
∣
∣
∣
P2,j=0

. (48)

The condition P1 = 0 results in k1 = (s− ξ1− iη)/θ1 =:
k1(1). One obtains

1

P2

∣
∣
∣
∣
∣
P1=0

=
θ1

(θ2− θ1)(s− s2,1− iη)
=

N k1
s− s2,1− iη

,

s2,1 :=
θ2ξ1− θ1ξ2
θ2− θ1

. (49)

In the same way P2 = 0 results in k1 = (s− ξ2− iη)/θ2 =:
k1(2). One obtains

1

P1

∣
∣
∣
∣
∣
P2=0

=
θ2

(θ1− θ2)(s− s1,2− iη)
=

N k2
s− s1,2− iη

,

s1,2 :=
θ1ξ2− θ2ξ1
θ1− θ2

. (50)
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Note that s1,2 = s2,1. For the other two types of residues,
however, a simplification appears after inserting the poles.
Because of the fact that for the semi-analytical calcula-
tion of the convergent part of the integral we use the limit
κi→ 0 for all i, we obtain

θ1,i, θ2,i→ 2k0 =: θ0 for i= 1, 2, . . . , jk. (51)

In this limit, and on the pole P1,j = 0 given by k1 =
(s− ξ1,j− iη)/θ0 =: k1(1,j), the different propagator factors
read

P1,i

∣
∣
∣
P1,j=0

= ξ1,i− ξ1,j ,

P2,i

∣
∣
∣
P1,j=0

= ξ2,i− ξ1,j ,

P1

∣
∣
∣
P1,j=0

=
1

θ0
((θ1− θ0)(s− iη)+ (ξ1θ0− θ1ξ1,j)) ,

P2

∣
∣
∣
P1,j=0

=
1

θ0
((θ2− θ0)(s− iη)+ (ξ2θ0− θ2ξ1,j)) .

(52)

Obviously, the dependence on s appears only in the numer-
ator. We can write

−
1

P2,j

jk∏

i=1
i�=j

(

1−
P1P2

P1,iP2,i

) ∣
∣
∣
∣
∣
P1,j=0

=

2jk−2∑

a=0

N k1,j,as
a, (53)

and similarly

−
1

P1,j

jk∏

i=1
i�=j

(

1−
P1P2

P1,iP2,i

) ∣
∣
∣
∣
∣
P2,j=0

=

2jk−2∑

a=0

N k2,j,as
a. (54)

The different poles are given by

k1(1) =
s− ξ1− iη

θ1
, k1(2) =

s− ξ2− iη

θ2
,

k1(1,i) =
s− ξ1,i− iη

θ0
, k2(2,i) =

s− ξ2,i− iη

θ0
for i= 1, 2, . . . , jk. (55)

For θi < 0 (i= 0, 1, 2) the corresponding pole can be found
in the upper complex half plane. For the linearization k0 =
k′0+ k1 and k

′
0+ l

′
0 > 0, the path has to be closed in the

upper half plane. In this case we obtain a non-vanishing
residue. For k′0+ l

′
0 < 0, however, the residue occurs only in

the case of θi > 0 and has the opposite sign. Using

Bkn = 2πi [θ(k
′
0+ l

′
0)θ(−θn)− θ(−(k

′
0+ l

′
0))θ(θn)] ,

n= 0, 1, 2 (56)

where θ(x) is the step function, we can integrate over k1 to
obtain

∫ +∞

−∞

dk1
P1P2

(
jk∏

i=1

(

1−
P1P2

P1,iP2,i

))

f(k1, l1)

=
2∑

n=1

(
BknN

k
n

s− s1,2− iη
f(k1(n), l1)

+

jk∑

i=1

2jk−2∑

a=0

Bk0N
k
n,i,as

af(k1(n,i), l1)

)

, (57)

where f(k1, l1) is given e.g. by the inverse of
�
√
(A(k1, l1)+ iη)2−4st (cf. (10)).
For the integration over l1 we have to consider the prop-

agator factors P4, P5, and P6. Because the degree of diver-
gence ωl is positive, no subtractions are needed. After the
linearization l0 = l

′
0+ l1 we can write

P4 = 2(l
′
0−E1+ qz)l1+(l

′
0−E1)

2− q2z− t−m
2
4+iη,

P5 = 2(l
′
0+E2+ qz)l1+(l

′
0+E2)

2− q2z− t−m
2
5+iη,

P6 = 2l
′
0l1+ l

′2
0 − t−m

2
6+iη, (58)

which again can be cast into the closed-form expression

Pi = φil1+ψi− t+iη, i= 4, 5, 6. (59)

The procedure which was explained for the integration over
k1 works accordingly. The poles of

1

P4P5P6
=

⎛

⎝
6∏

j=4

(φj l1+ψj− t+iη)

⎞

⎠

−1

(60)

are found at

l1(m) =
t−ψm− iη

φm
form= 4, 5, 6. (61)

From (11) we read off that the cut is located in the same
complex half plane as in the case of the integration over k1.
Therefore, the occurrence and the sign of the residue are
determined by

Blm = 2πi [θ(k
′
0+ l

′
0)θ(−φm)− θ(−(k

′
0+ l

′
0))θ(φm)] ,

m= 4, 5, 6. (62)
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Using Cauchy’s theorem, we obtain

∫ +∞

−∞

dl1
P4P5P6

f(k1, l1)

=
6∑

m=4

⎛

⎜
⎜
⎜
⎜
⎝

6∏

j=4
j �=m

(φj l1(m)+ψj− t+iη)

⎞

⎟
⎟
⎟
⎟
⎠

−1

Blmf(k1, l1(m))

=
6∑

m=4

⎛

⎜
⎜
⎜
⎜
⎝

6∏

j=4
j �=m

(
t(φj −φm)+ (ψjφm−ψmφj)

− iη(φj −φm)
)

⎞

⎟
⎟
⎟
⎟
⎠

−1

φ2mB
l
mf(k1, l1(m)). (63)

Of course, the same is valid if k1 is replaced by k1(n) or
k1(n,i). Usually, φj and φm are different for j 	=m. In this
case we can write

t(φj−φm)− (φjψm−φmψj)− iη(φj −φm)

= (φj −φm)(t− tj,m− iη) (64)

with

tj,m =
φjψm−φmψj
φj−φm

. (65)

We perform a partial fraction decomposition to obtain

∫ +∞

−∞

dl1
P4P5P6

f(k1, l1)

=
5∑

m=4

6∑

j=m+1

BlmN
l
m,j

t− tm,j− iη
f(k1, l1(m)), (66)

where N lm,j are the corresponding coefficients including
φ2m. A special situation occurs if p

2
1 = 0. Because of qz =E1,

in this case we have φ4 = φ6 and the corresponding de-
nominator factor contributes in the form (ψ4−ψ6)φ6 only.
However, if p22 = 0, no special case has to be taken

4.
The integrations over k1 and l1 and the integration over

z can be combined into the closed-form expression for the
convergent part V0α of the master integral T

0
α in the case of

4 For the other linearization l0 = l
′
0− l1 the situation is the

opposite.

κi→ 0,

V0α =

∫
(k0−k1)α

P1P2P3P4P5P6
K(jk)d4k d4l

= π2
2∑

n=1

5∑

m=4

6∑

j=m+1

∫ ∞

0

k′α0 dk
′
0 dl

′
0

∫ ∞

0

N lm,j dt

t− tm,j− iη

×

∫ ∞

0

(
Bkln,mN

k
n ds

(s− s1,2− iη) �
√
(An,m+iη)2−4st

+

jk∑

i=1

2jk−2∑

a=0

Bkl0,mN
k
n,i,as

ads
�
√
(An,i,m+iη)2−4st

)

, (67)

where

Bkln,m = B
k
nB
l
m

=−4π2
[
θ(k′0+ l

′
0)θ(−θn)θ(−φm)

+ θ(−(k′0+ l
′
0))θ(θn)θ(φm)

]
(68)

and An,m, An,i,m are the coefficients A in (9) with k1 re-
placed by k1(n), k1(n,i) and l1 replaced by l1(m), i.e. An,m =
A(k1(n), l1(m)) and An,i,m =A(k1(n,i), l1(m)).

4.4 Subtraction for the rotated reduced
planar topologies

For the rotated reduced planar topologies we are left with
the integrals

T 9−xαβ =

∫
(k0∓k1)α(l0∓ l1)β

P1P2P3PxP6
dDk dDl, (69)

where in the case of the topology T 4 (x= 5) the upper sign
and in the case of the topology T 5 (x= 4) the lower sign is
valid. The degrees of divergence can be calculated to be

ωk = 2−α, ωl = 2−β, ω = 2−α−β. (70)

For β ≥ 2 the integration over l becomes divergent and
a subtraction has to be performed in addition to the sub-
traction in k. The subtraction factor is given by

L(jl) =

jl∏

j=1

(

1−
Px

Px,j

)

, x= 4, 5 (71)

where in addition to P4 = (l−p1)2−m24+iη and P5 = (l+
p2)
2−m25+iη we have

P4,j = (l−λjp1)
2−m24,j+iη,

P5,j = (l+λjp2)
2−m25,j+iη. (72)

The same limitations as were mentioned at the end of
Sect. 4.2 for the subtraction massesm1,i andm2,i apply for
the massesm4,j andm5,j as well.



S. Groote, M.M. Knodel: Evaluating massive planar two-loop tensor vertex integrals 167

4.5 Integration for the rotated reduced
planar topologies

The integration over k1 can be done in the same way as
for the original (non-reduced) planar topology. However,
special care has to be taken concerning the different lin-
earization in case of the topology T 5. For the topology T 5

we have θ0 =−2k′0 and the step-function term B
k
n has to be

replaced by

Bkn = 2πi
[
θ(−(k′0+ l

′
0))θ(−θn)− θ(k

′
0+ l

′
0)θ(θn)

]
. (73)

For the integration over l1 we have to perform a subtrac-
tion. After the linearization l0 = l

′
0±k1 the propagator fac-

tors in the P/O-space representation are given by

P5 = 2(l
′
0+(E2+ qz))l1+(l

′
0+E2)

2− q2z− t−m
2
5+iη,

P5,j = 2(l
′
0+λj(E2+ qz))l1+(l

′
0+λjE2)

2

−λ2j q
2
z − t−m

2
5+iη,

P6 = 2l
′
0l1+ l

′2
0 − t−m

2
6+iη for the topology T4, (74)

P4 =−2(l
′
0− (E1+ qz))l1+(l

′
0−E1)

2− q2z− t−m
2
4+iη,

P4,j =−2(l
′
0−λj(E2+ qz))l1+(l

′
0−λjE2)

2

−λ2j q
2
z − t−m

2
4+iη,

P6 =−2l
′
0l1+ l

′2
0 − t−m

2
6+iη for the topology T5. (75)

These propagator factors can be written as

Px = φxl1+ψx− t+iη, Px,j = φx,jl1+ψx,j− t+iη

P6 = φ6l1+ψ6− t+iη. (x= 4, 5) (76)

In the limit λi→ 0, which will be considered in the follow-
ing, we see that

φx,j → φ6 =±2l
′
0. (77)

In the case of the linearization l0 = l
′
0+ l1 the integration

path [−∞,+∞] over l1 can be closed in the upper complex
half plane for (k′0+ l

′
0) > 0 and in the lower complex half

plane for (k′0+ l
′
0)< 0. For the other linearization k0 = k

′
0−

k1 the situation is just the opposite. Because the poles are
given by

l1(x) =
t−ψx− iη

φx
, l1(x,j) =

t−ψx,j− iη

φ6
,

l1(6) =
t−ψ6− iη

φ6
, (78)

the integration ranges in t are constrained by

Blm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2πi [θ(−(k′0+ l
′
0))θ(−φm)− θ(k

′
0+ l

′
0)θ(φm)]

for x= 4 (topology T 5),

2πi [θ(k′0+ l
′
0)θ(−φm)− θ(−(k

′
0+ l

′
0))θ(φm)]

for x= 5 (topology T 4).
(79)

In order to use Cauchy’s theorem, we calculate the residues

Res

[
1

PxP6

jl∏

i=1

(

1−
Px

Px,i

)

;Px = 0

]

=
1

P6

∣
∣
∣
∣
∣
Px=0

,

Res

[
1

PxP6

jl∏

i=1

(

1−
Px

Px,i

)

;Px,j = 0

]

=
1

P6

∏

i=1
i�=j

(

1−
Px

Px,i

) ∣
∣
∣
∣
∣
Px,j=0

,

Res

[
1

PxP6

jl∏

i=1

(

1−
Px

Px,i

)

;P6 = 0

]

=
1

Px

jl∏

i=1

(

1−
Px

Px,i

) ∣
∣
∣
∣
∣
P6=0

. (80)

For the first residue we obtain

1

P6

∣
∣
∣
∣
Px=0

=
φx

(φ6−φx)(t− t6,x− iη)
=:

N lx
t− t6,x− iη

,

t6,x =
φ6ψx−φxψ6
φ6−φx

. (81)

For the second one we first calculate

P6

∣
∣
∣
Px,j=0

= ψ6−ψx,j,

Px

∣
∣
∣
Px,j=0

=
1

φ6
((φx−φ6)(t− iη)− (φxψx,j−φ6ψx)) ,

Px,i

∣
∣
∣
px,j=0

= ψx,i−ψx,j. (82)

Therefore, the denominator of this residuum is indepen-
dent of t while the numerator is a power series up to the
power tjl−1. We define the coefficientsN lx,j,a by

1

P6

∏

i=1
i�=j

(

1−
Px

Px,i

) ∣
∣
∣
∣
∣
Px,j=0

=:

jl−1∑

a=0

N lx,j,at
a. (83)

The last residue appears to be a combination of a pole in
t and a power series. However, we can separate these two
parts by adding and subtracting an appropriate term. This
term is given by

1

Px

∣
∣
∣
∣
∣
P6=0

=
φ6

(φx−φ6)(t− tx,6− iη)
=:

N l6
t− tx,6− iη

,

tx,6 =
φxψ6−φ6ψx
φx−φ6

. (84)
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If we subtract this term from the result for the last residue,
we obtain

1

Px

jl∏

i=1

(

1−
Px

Px,i

)

−
1

Px

=
1

Px

{

1−

jl∑

i=1

Px

Px,i
+O(P 2x )

}

−
1

Px

=−

jl∑

i=1

1

Px,i
+O(Px). (85)

The difference no longer has a factor Px in the denomina-
tor. Instead, we obtain again a power series up to the power
tjl−1. We define the coefficientsN l6,j,a by

1

Px

jl∏

i=1

(

1−
Px

Px,i

) ∣
∣
∣
∣
P6=0

−
1

Px

∣
∣
∣
∣
P6=0

=:

jl−1∑

a=0

N l6,j,at
a. (86)

Having calculated the residues, we can perform the inte-
gration over l1 to obtain

∫ +∞

−∞

dl1
PxP6

jl∏

i=1

(

1−
Px

Px,i

)

f(k1, l1)

=
BlxN

l
x

t− t6,x− iη
f(k1, l1(x))+

Bl6N
l
6

t− tx,6− iη
f(k1, l1(6))

+

jl∑

i=1

jl−1∑

a=0

(
Bl6N

l
x,i,at

a+Bl6N
l
6,i,at

a
)
f(k1, l1(6,i))

=
∑

m=x,6

(
BlmN

l
m

t− tx,6− iη
f(k1, l1(m))

+

jl∑

i=1

jl−1∑

a=0

Bl6N
l
m,i,at

af(k1, l1(m,i))

)

. (87)

The integrations over k1 and l1 and the integration over
z can be combined into the closed-form expression for the
convergent part V9−xα of the master integral T 9−xα in the
case of κi, λi→ 0. One has

V9−xα =

∫
(k0∓k1)α(l0∓ l1)β

P1P2P3PxP6
K(jk)K(jl)d4k d4l

= π2
∫ ∞

0

k′α0 dk
′
0l
′β
0 dl

′
0

∫ ∞

0

ds dt

×
2∑

n=1

∑

m=x,6
{

Bkln,mN
k
nN

l
m

(s− s1,2− iη)(t− tx,6− iη) �
√
(An,m+iη)2−4st

+

jk∑

i=1

2jk−2∑

a=0

Bkl0,mN
k
n,i,as

aN lm

(t− tx,6− iη) �
√
(An,i,m+iη)2−4st

+

jl∑

j=1

jl−1∑

b=0

Bkln,6N
k
nN

l
m,j,bt

b

(s− s1,2− iη) �
√
(An,m,j+iη)2−4st

+

jk∑

i=1

jl∑

j=1

2jk−2∑

a=0

jl−1∑

b=0

Bkl0,6N
k
n,i,as

aN lm,j,bt
b

�
√
(An,i,m,j +iη)2−4st

}

.

(88)

For the topology T 4 (x= 5), Bkln,m is given by (68), i.e. it
is the same as for the non-reduced planar topology. For the
topology T 5 (x= 4), however, we obtain

Bkln,m = B
k
nB
l
m

=−4π2
[
θ(−(k′0+ l

′
0))θ(−θn)θ(−φm)

+ θ(k′0+ l
′
0)θ(θn)θ(φm)

]
. (89)

The coefficients in the square roots read An,m = A(k1(n) ,

l1(m)),An,i,m =A(k1(n,i), l1(m)),An,m,j =A(k1(n), l1(m,j)),

An,i,m,j =A(k1(n,i), l(m,j)).

4.6 Integral basis for the orthogonal space quadrature

The integrals over s and t resulting for both the non-
reduced and the rotated reduced planar topologies are
called basic integrals. They are of the types

F(rs, rt, r0, s0, t0)

=

∫ ∞

0

ds dt

(s− s0− iη)(t− t0− iη)
�
√
(r0− rss− rtt)2−4st

,

Fsα(rs, rt, r0, t0)

=

∫ ∞

0

sαds dt

(t− t0− iη) �
√
(r0− rss− rtt)2−4st

,

F tβ(rs, rt, r0, s0)

=

∫ ∞

0

tβ ds dt

(s− s0− iη) �
√
(r0− rss− rtt)2−4st

,

Fstα,β(rs, rt, r0)

=

∫ ∞

0

sαtβ ds dt
�
√
(r0− rss− rtt)2−4st

. (90)

All these integrals are divergent except for the first one.
However, after the subtraction they occur in sums in which
the divergences vanish. While the integral F(rs, rt, r0,
s0, t0) is calculated in [35, 54, 58], the other integrals are
new. The results can be found in Appendix A in terms of
the parameters rs, rt, r0, s0, and t0. In this paragraph we
are dealing only with the dependence on the parameters rs,
rt, and r0 and on the poles found in the residue integration.
In the case of the integral F(rs, rt, r0, s0, t0) we obtain

r0 = (k
′
0+ l

′
0)
2∓2

(
ξn+iη

θn
+
ψm+iη

φm

)

(k′0+ l
′
0)−m

2
3− iη

=: rn,m,

rs = 1∓2
k′0+ l

′
0

θn
, rt = 1∓2

k′0+ l
′
0

φm
, (91)

where the signs correspond to the two linearizations l0 =
l′0± l1. Note that rs, rt > 0 and rsrt > 1 in regions where
the numerical integration has to be done. For Fsα we have
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to replace θn by θ0 and ξn by ξn,i. ForF tβ we have to replace
φm by φ6 and ψm by ψm,j . For Fstα,β, finally, both replace-
ments have to be performed. Note that up to the choice for
the parameters s0, t0, rs, and rt, Fsα and F

t
β are the same

integrals.
The imaginary parts in the rational factors in the nu-

merator are used to separate real and imaginary parts ac-
cording to the Sokhotsky–Plemely relations

lim
η→+0

∫ b

a

f(x)dx

x−x0± iη
=P

∫ b

a

f(x)dx

x−x0

∓ iπ

∫ b

a

δ(x−x0)f(x)dx,

(92)

where ‘P’ indicates the principal value integral.

4.7 Analytic behavior of the modified square root

We have to consider different cases in order to analyze the
analytic behavior of the square root occurring in the inte-
grand [34, 35, 54]. The equation

R(s, t) = (r0− rss− rtt)
2−4st= 0 (93)

parameterizes an ellipse which separates the positive and
negative values of the radicand. Outside of the ellipse the
radicand is positive, while for points inside the ellipse it
takes negative values. The ellipse touches the axes at s=
r0/rs and t= r0/rt. For r0 < 0, therefore, the ellipse is lo-
cated in the third quadrant. But, because the integration
is performed in the first quadrant (s ∈ [0,∞], t ∈ [0,∞]),
the square root will give real values and no imaginary
part is produced. For r0 > 0, however, the ellipse moves
into the integration region and imaginary parts enter the
calculations.
In order to evaluate the square root uniquely, we also

consider the imaginary part of the radicand, caused by
the term iη. It turns out that the sign of the imaginary
part is determined by the sign of r0− rss− rtt, the ze-
ros of which are given by the straight line connecting the
points s= r0/rs and t= r0/rt on the axes where the ellipse
touches the axes. Above this line (as seen from the origin
for r0 > 0), the imaginary part is negative, below this line
it is positive. The situation is shown in Fig. 2.
We distinguish the following cases:

– outside the ellipse and below the line (ReR(s, t) > 0,
ImR(s, t)> 0) we have

�
√
(r0− rss− rtt)2−4st=+

√
(r0− rss− rtt)2−4st

– outside the ellipse and above the line (ReR(s, t) > 0,
ImR(s, t)< 0) we have

�
√
(r0− rss− rtt)2−4st=−

√
(r0− rss− rtt)2−4st

– inside the ellipse (ReR(s, t)< 0) we have

�
√
(r0− rss− rtt)2−4st= i

√
4st− (r0− rss− rtt)2

Fig. 2. Regions in the (s, t)-plane with different real and imag-
inary parts for the radicand R(s, t) = (r0− rss− rtt)

2−4st

5 Landau singularities and thresholds

Multi-loop integrals with many propagator factors are in-
fluenced by their singularity structure. The pole structure
can be analyzed by using Feynman parameterization [59,
60]. Starting from

F (pj ,mk) =

∫ (
L∏

l=1

d4kl

)

f(pj , kl,mk)
N∏

n=1

i

An
,

An = q
2
n−m

2
n+iη (94)

with E outer momenta pj , L loop momenta kl, N inner
massesmn, and qn a linear combination of pj and kl, we can
apply the Feynman parameterization

1

A1A2 · · ·AN

= (N −1)!

∫ 1

0

δ(λ1+λ2+ . . .+λN −1)dλ1dλ2 · · · dλN
(λ1A1+λ2A2+ . . .+λNAN )N

.

(95)

By shifting the inner momenta kl to k
′
l by finite amounts

(which are determined by the outer momenta), the denom-
inator can be rewritten as

D =
N∑

n=1

λnAn = φ+K(k
′
1, k

′
2, . . . , k

′
L), (96)

where φ is independent of inner momenta and K is
a quadratic form in the shifted momenta k′l. It can then
be shown [59, 60] that the denominator vanishes, i.e. the
integral has so-called Landau singularities, if

λn(q
2
n−m

2
n) = 0 for all n= 1, . . . , N

(first Landau equation) (97)

and
N∑

n=1

λnqn = 0 for each loop

(second Landau equation). (98)
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5.1 Two- and three-particle thresholds

The Landau equations can be used to analyze a given Feyn-
man diagram. For two-point functions, singularities occur
if the squared outer momentum crosses thresholds or pseu-
dothresholds. For a genuine sunset diagram as shown in
Fig. 3, a two-loop two-point function with three lines of
mass valuesm1,m2, andm3 connecting the incoming with
the outgoing leg, these thresholds and pseudothresholds
are given by

p2 = (m1±m2±m3)
2, (99)

where the three-particle threshold is located at p2 = (m1+
m2+m3)

2. In general, the genuine threshold is the one

Fig. 3. Sunset diagram with momenta (left-hand side) and
masses (right-hand side)

Fig. 4. Real part (top) and imaginary part (bottom) for the
scalar planar two-loop three-point diagram T 00 of (42) with de-
cay mass M between 100 GeV and 800 GeV. For the values of
masses and momenta we use the standard set given in (101)

Fig. 5. Planar topology T 0 (left-hand side) and the subtrac-
tion terms (right-hand side). For convenience, relative factors
are not mentioned in the diagrammatic representation. The
numerator factor for the master integral and the subtraction
terms reads (k0−k1)

α

with the highest value. If the squared momentum crosses
this threshold, an imaginary part appears. According to
the Cutkosky rules [61], this imaginary part corresponds
to the situation where the particles move onto their mass
shell. In terms of Feynman diagrams, inner lines are cut
into outer legs for physical particles. This can be visualized
in Feynman diagrams by drawing a cutting line.
In the diagramswe are workingwith we expect two- and

three-particle thresholds. While the two-particle thresh-
olds are related to the values of s0 = sn,m and t0 = tn,m,
all the three-particle thresholds are related to the values of
r0 = rn,m,

s1,2 > 0⇔ p
2 > (m1+m2)

2,

r1,5 > 0⇔ p
2 > (m1+m3+m5)

2,

t4,5 > 0⇔ p
2 > (m4+m5)

2,

r2,4 > 0⇔ p
2 > (m2+m3+m4)

2,

t4,6 > 0⇔ p
2 > (m4+m6)

2,

r1,6 > 0⇔ p
2
1 > (m1+m3+m6)

2,

t5,6 > 0⇔ p
2 > (m5+m6)

2,

r2,6 > 0⇔ p
2
2 > (m2+m3+m6)

2. (100)

Anticipating examples to follow, for the subtraction terms
some of the two-particle thresholds vanish while new three-
particle thresholds appear. For the diagram shown on
the right-hand side of Fig. 5, additional three-particle
thresholds appear for p21 > (mn,j +m3+m4)

2 (rn,j,4 > 0)
and p22 > (mn,j+m3+m5)

2 (rn,j,5 > 0) while two-particle
thresholds including the masses m1 and m2 no longer
occur.

5.2 Landau singularities for the scalar topology

As an example we consider the original planar topology in
(42) with α = 0. Because we are only interested in a qual-
itative analysis, we use the following fictitious values for
masses and outgoing momenta:

m1 = 420GeV, m3 = 100GeV,

m4 = 120GeV,
√
p21 = 60GeV,

m2 = 80GeV, m5 = 200GeV,
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m6 = 300GeV,
√
p22 = 20GeV. (101)

For the decaying particle we vary the value ofM =
√
p2 in

a range betweenM = 100GeV andM = 800GeV and plot
the real and imaginary parts. The result is shown in Fig. 4.
A three-particle threshold is expected for M =m2+

m3+m4 = 300GeV. At this point we see that the imag-
inary part starts to differ from zero. The two-particle
threshold at M =m4+m5 = 320GeV is characterized by
a sharp peak in the real part, accompanied by an instant
decrease of the imaginary part, leading to a vertical tan-
gent to the curve at this point. For the second two-particle
threshold in this energy range atM =m1+m2 = 500GeV,
the situation is the opposite. The imaginary part shows
a sharp peak while the real part increases with vertical
slope.

5.3 The topology of the subtraction terms

If we consider tensor integrals we have to take subtraction
terms into account. As was shown in the previous section,
for the planar two-loop three-point master diagram with
power (k0−k1)2 we need a single subtraction. Each sub-
traction replaces the propagator factors by the subtracted
ones. In the present case one has

V02 =

∫
(k0−k1)2d4kd4l

P1P2P3P4P5P6

(

1−
P1P2

P1,1P2,1

)

=

∫
(k0−k1)2d4kd4l

P1P2P3P4P5P6
−

∫
(k0−k1)2d4kd4l

P1,1P2,1P3P4P5P6
(102)

(for higher-order subtractions the scaled propagator fac-
tors appear in higher powers). If we perform the limit κ→ 0
for P1,1 = (k+κp1)

2−m21,1− iη and P2,1 = (k−κp2)
2−

m22,1− iη, the propagator factors lose their dependence on
the outer momenta pi. In this case the momentum scheme
given for the original diagram is no longer valid. We first
have to perform a partial fraction decomposition for the
subtraction term
∫
(k0−k1)2dDk dDl

P1,1P2,1P3P4P5P6
=

1

m22,1−m
2
1,1

×

[∫
(k0−k1)2dDk dDl

P1,1P3P4P5P6
−

∫
(k0−k1)2dDk dDl

P2,1P3P4P5P6

]

.

(103)

After that, the lines can be rearranged according to their
momenta. The planar diagram is shown in Fig. 5 together
with the subtraction. For convenience, relative factors are
not mentioned in the diagrammatic representation.

6 Numerical integration

After having performed all other integrations analytically,
only the two integrations over k′0 and l

′
0 are left. The inte-

gration region is given by the non-vanishing of the factors

Bkln,m, which read

Bkln,m =−4π
2
[
θ(±(k′0+ l

′
0))θ(−θn)θ(−φm)

+ θ(±(k′0+ l
′
0))θ(θn)θ(φm)

]
, (104)

depending on the linearizations k0 = k
′
0±k1 and l0 = l

′
0±

l1. If we take into account that

θ1 =±2(k
′
0+E1∓ qz), θ2 =±2(k

′
0−E2∓ qz), θ0 =±2k

′
0

φ4 =±2(l
′
0−E1± qz), φ5 =±2(l

′
0+E2± qz), φ6 =±2l

′
0,

(105)

the integration regions can be seen to be triangles which
are bounded by the off-diagonal k′0+ l

′
0 = 0 and the differ-

ent inequalities coming from θn and φm. In the case of the
index couples (n,m) = (1, 4), (2, 5), (0, 6) the integration
region vanishes identically. The non-vanishing integration
regions are shown in Fig. 6 in the case of the linearizations
k0 = k

′
0+k1 and l0 = l

′
0+ l1. Two remarks are in order at

this point.

– Special care has to be taken for the case (n,m) = (0, 6).
In this case, the integration region vanishes only in the
limit κi, λi→ 0. However, we have thoroughly checked
that in this limit the integrand does not diverge, i.e.
the integral does not give a non-vanishing contribution
even with a vanishing integration region [62].
– In the case that one of the masses vanishes, integration
regions might vanish. In Fig. 6 we see that if E1 = qz,
i.e. if p21 = 0, the triangles (n,m) = (1, 6), (0, 4) vanish.
In the case of the opposite linearization and with p22 = 0,
the same holds for (n,m) = (2, 6), (0, 5) instead. How-
ever, the integrand does not diverge in these cases.

The integrations are performed using numerical routines
like the Monte Carlo integration routine VEGAS [43, 44]
and the program Divonne of the library CUBA [45]. While
numerical routines sometimes overestimate the precision of
the result [63, 64], the use of two different routines enables
us to have a measure for the accuracy of the result. In this
section we will present a few examples in order to demon-
strate the reliability of our method.

6.1 The Z0 decay via top-quark loop

As a first example we consider the basic integral in (102)
occurring in a process where the Z0 boson couples to a tri-
angle with top-quark current (cf. Fig. 7). We have started
the discussion already in (102) and will continue at this
point. The masses are chosen to be

m1 =m2 =m3 =mt, m4 =m5 =mZ , and m6 =ml,
(106)

where we use the valuesmt = 178GeV,mZ = 91.1876GeV
[65], and ml = 0. The subtraction masses which should
have different values are taken as m1,1 = 150GeV and
m2,1 = 160GeV. Because the squared mass of the Z

0 boson
is below all possible thresholds, the imaginary part of this
integral vanishes. Even though physical masses are chosen
in this paragraph, we stress that instead of calculating the
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Fig. 6. The integration regions for the last (numerical) two-
dimensional integration are triangles which are bounded by the
line k′0+ l

′
0 = 0, a vertical and a horizontal line, according to

the condition that Bkln,m in (68) or (89) does not vanish. The
integration regions for different values of index couples (n,m)
are shown for the linearizations k0 = k

′
0+k1 and l0 = l

′
0+ l1. In

the case of the opposite linearizations, the signs in front of qz
change

whole process we are dealing with the occurring planar ba-
sic diagram only.
We calculate the integral for 50 points between κ1 =

0.01 and κ1 = 0.5 for the (dimensionless) parameter κ1.
As a next step we approximate the points by a low-degree
polynomial in order to extrapolate to κ1 = 0. The result of
this extrapolation can then be compared with the result
for the integral where we used κ1 = 0 from the very be-
ginning. For the integration with VEGAS, 260 000 internal
points were used, whereas for Divonne we use a standard
precision of 10−3. The results of this fit are shown in Ta-
bles 1 and 2. If κ1 = 0 is used from the very beginning and
all integrations are done analytically except for the last
two, we obtain the results shown in the last rows of Ta-
bles 1 and 2 marked by an ‘x’. Obviously, these values are
already reliably approximated by the second-order fit. In
the case of VEGAS, the quantity χ2/(n−1) for n sampling
points as a measure for the reliability of the polynomial fit
of the numerical integrations approaches the optimal value
1.0 quite fast. The deviation of the order of 1 in the case
of Divonne is not problematic because we use this second
method only to check the VEGAS calculation. The result
is shown graphically in Fig. 8. In this figure we show the
results of the numerical calculation as a function of κ1 to-
gether with the result for the semi-analytical calculation
for κ1 = 0. The error bars for the latter are plotted at differ-
ent points in order to allow for a better comparison. Also,
optically the results for numerical and semi-analytical cal-

Fig. 7. Feynman diagram cor-
responding to V02 in (102)

Table 1. Extrapolation of the contributions for V02 using
VEGAS

Degree Real part σRe χ2Re/(n−1)

0 −2.941141×10−4 1.4×10−9 1.2×107

1 −3.484637×10−4 2.6×10−9 3.8×105

2 −3.361064×10−4 3.9×10−9 1.4×101

3 −3.361950×10−4 5.2×10−9 1.4×100

4 −3.361836×10−4 6.8×10−9 1.3×100

5 −3.361884×10−4 8.6×10−9 1.3×100

6 −3.361693×10−4 1.1×10−8 1.1×100

x −3.365555×10−4 7.2×10−9

Table 2. Extrapolation of the contributions for V02 using
Divonne

Degree Real part σRe χ2Re/(n−1)

0 −2.81249×10−4 3.9×10−8 1.7×104

1 −3.52842×10−4 8.7×10−8 5.0×102

2 −3.36111×10−4 1.3×10−7 1.0×10−1

3 −3.36265×10−4 1.9×10−7 7.4×10−2

4 −3.36301×10−4 2.5×10−7 7.3×10−2

5 −3.36294×10−4 3.2×10−7 7.3×10−2

6 −3.36209×10−4 4.1×10−7 7.1×10−2

x −3.36530×10−4 3.3×10−7

culations match very well. This gives us confidence in the
correct implementation of the algorithm.

6.2 Rotated reduced planar topology

Next we consider the numerical results for a specific ex-
ample of the rotated reduced planar topology T 5. The
physical starting point is a decay of the Z0 boson via a lep-
ton loop, coupling to the outer lepton and anti-lepton legs
viaW bosons. The integral

V521 =

∫
(k0+k1)

2(l0+ l1)

P1P2P3P4P6

×

(

1−
P1P2

P1,1P2,1

)(

1−
P4

P4,1

)

d4k d4l (107)

contains two subtraction terms, for the k-loop as well
as for the l-loop. In this case we consider the limit
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Fig. 8. Real part of the integral V02 in (102) as a function of
the parameter κ1. For the masses and momenta we used values
related to the decay of the Z0 boson into a top-quark loop,
as explained in the text (cf. Fig. 7). Shown are the results for
the numerical calculation (curve) and the result for the semi-
analytical calculation with κ1 = 0 (horizontal straight line). In
both cases we have used VEGAS

κ1 = 0.8λ1→ 0. The diagram with rotated reduced planar
topology is shown in Fig. 10 together with the three differ-
ent types of subtraction terms. The masses take the values
m1 =m2 =m3 =ml = 0,m4 =mW = 80425GeV [65], and
m6 =ml = 0. The momenta are given by

√
p21 =

√
p22 =

ml = 0 and
√
p2 =mZ . For the three subtraction masses

we take m1,1 = 200GeV, m2,1 = 300GeV, and m4,1 =
110GeV. In Table 3 we show the results for the numeri-
cal integration with VEGAS for the real and imaginary
parts. Only the values at polynomial degrees 2 and 3 are
shown. They are in good agreement with the result at
polynomial degree 2 obtained by using Divonne (Table 4).
The results for the semi-analytical calculation are again
given in the last rows of the two tables. Looking at the
values obtained by using VEGAS in Fig. 9, one sees good
agreement.

6.3 Results for varying decay mass

For the integral with two subtractions for the k-loop,

V03 =

∫
(k0−k1)3d4kd4l

P1P2P3P4P5P6

2∏

i=1

(

1−
P1P2

P1,iP2,i

)

, (108)

we vary the decay mass M =
√
p2 in order to identify

different thresholds. The values for physical masses and

Table 3. Extrapolation of the contributions for V521 using VEGAS

Degree Real part σRe χ2Re/(n−1) Imag. part σIm χ2Im/(n−1)

2 2.71015×103 3.0×10−1 8.5×10−1 6.67079×103 7.7×10−1 1.1×100

3 2.71047×103 4.2×10−1 8.3×10−1 6.6712×103 1.1×100 1.1×100

x 2.71125×103 7.0×10−1 6.6703×103 1.7×100

Fig. 9. Real part (top) and imaginary part (bottom) of the
integral V521 in (107) as a function of the parameters λ1 and
κ1 = 0.8λ1. Shown are the results for the numerical calculation
(curve) and for the semi-analytical calculation with κ1 = λ1 = 0
(horizontal straight line), both obtained by using VEGAS

outgoing momenta are again taken from (101); for the sub-
traction masses we use m1,1 = 100GeV, m2,1 = 200GeV,
m1,2 = 350GeV, andm2,2 = 450GeV. In varyingM we can
observe the behavior of the real and the imaginary parts.
The behavior is shown in Fig. 11 for decay mass values
close to M = 320GeV. As in the case of the simple ex-
ample shown in Fig. 4 we notice a sharp peak for the real
part and a vertical slope for the imaginary part at the
pointM = 320GeV, which corresponds to the two-particle
threshold M2 = p2 = (m4+m5)

2. In a second step we are
looking more closely at the threshold region. Taking the
value M = 325GeV, we analyze the real and imaginary
parts for κ2 = 0.6κ1→ 0. In Table 5 we show results of the
polynomial fit for the results obtained by VEGAS. The last
rows of Tables 5 and 6 are the semi-analytical results ob-
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Table 4. Extrapolation of the contributions for V521 using Divonne

Degree Real part σRe χ2Re/(n−1) Imag. part σIm χ2Im/(n−1)

2 2.7094×103 1.0×100 4.4×10−1 6.6691×103 2.7×100 3.7×10−1

x 2.7042×103 2.6×100 6.6736×103 6.6×100

Fig. 10. Rotated reduced planar topology T 5 (first diagram)
and the subtraction terms. For convenience, relative factors are
not mentioned in the diagrammatic representation. Summa-
tions over n= 1, 2, i= 1, . . . , jk, and j = 1, . . . , jl are assumed
(cf. Fig. 5). The numerator factor for the master integral and
the subtraction terms reads (k0+k1)

α(l0+ l1)
β

tained by using VEGAS and Divonne, respectively. The
results are shown in Fig. 12. Again both methods lead to
the same result in the limit κ2 = 0.6κ1→ 0.

6.4 Combined integration

After having performed these tests, the semi-analytical
evaluation of the partial results from the different mas-
ter integrals appears to be feasible. This might be done
by performing the numerical integrations separately for
each master integral and afterwards combining the results.
However, it turns out that the more stable method is to
first perform the analytical integrations separately and
then to do the numerical integration for the sum of all basic
integrands relevant for a given process. This is especially
true for squaredmomenta on the threshold or close to it. As
an example we use

Tex =

∫
(kl)(p1k)(p2k+p2l)

P1P2P3P4P5P6
dDk dDl. (109)

After the tensor reduction explained in Sect. 3, we are
left with the original planar topology and the two rotated
reduced planar topologies, both with different powers of
(k0∓k1) and (l0∓ l1), and diagrams of simpler topologies.
The master integrals for the non-reduced and rotated re-
duced planar topologies can be calculated by applying the
subtractions explained in Sect. 4. For the convergent part
the limit κi, λi→ 0 can be performed. All integrations up
to the last two can be done analytically. The combination
of the different UV-finite contributions with planar and ro-
tated reduced planar topologies at this point is called Vex.
As explained before, there are two possibilities to pro-

ceed. We can combine all analytical results into a single
expression and integrate this expression numerically (com-
bined integration), or we can perform the numerical inte-
gration of the analytical expression for each of the master

Fig. 11. Real part (top) and imaginary part (bottom) of the in-
tegral V03 in (108) as a function of the decay mass M =

√
p2

close toM = 320 GeV. The values for the masses and outgoing
momenta are taken from (101)

integrals separately and add up the results afterwards (sep-
arated integration). We will perform both calculations in
the following to compare them.
For the physical masses and outgoing momenta we

again use the values in (101). The square of the decay
mass M =

√
p2 = 500GeV is chosen to be equal to the

two-particle threshold p2 = (m5+m6)
2. For the subtrac-

tion masses we take values with an offsetm0, which in this
example runs from 0 GeV to 200GeV5:

m1,1 = 5GeV+m0, m1,2 = 25GeV+m0,

m2,1 = 15GeV+m0, m2,2 = 35GeV+m0. (110)

Subtraction terms and corresponding subtraction masses
for the second loop momentum l are not necessary, since

5 Note that Vex still does not need to be independent of the
subtraction masses because only in the sum with the finite
parts of the subtraction terms will this dependence vanish.
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Table 5. Extrapolation of the contributions for V03 using VEGAS

Degree Real part σRe χ2Re/(n−1) Imag. part σIm χ2Im/(n−1)

3 −3.00814×10−1 1.2×10−5 4.2×100 −1.519135×10−1 5.2×10−6 3.6×100

4 −3.00692×10−1 1.5×10−5 8.9×10−1 −1.518660×10−1 6.8×10−6 1.2×100

x −3.00689×10−1 1.7×10−5 −1.51865×10−1 1.4×10−5

Table 6. Extrapolation of the contributions for V03 using Divonne

Degree Real part σRe χ2Re/(n−1) Imag. part σIm χ2Im/(n−1)

x −3.0083×10−1 2.9×10−4 −1.5196×10−1 1.4×10−4

Fig. 12. Real part (top) and imaginary part (bottom) of the
integral V03 in (108) as a function of the parameters κ1 and
κ2 = 0.6κ1 for the decay mass value M =

√
p2 = 325 GeV.

Shown are the results for the numerical calculation (curve) and
for the semi-analytical calculation with κ2 = κ1 = 0 (horizontal
straight line), both obtained by using VEGAS

in this particular case the contributing planar and rotated
reduced planar topologies do not contain subdivergences
in l. The results are shown in Fig. 13. The left-hand side of
Fig. 13 shows real and imaginary parts for the separated
integration; the right-hand side shows real and imaginary
parts for the combined integration. It is obvious that the
combined integration is much more stable.
This result is easy to understand. Assuming that the

relative variances are the same for all n partial integrals

and for the complete integral, we can use the same number
of intersection points in the Monte Carlo integration for
each separate integral and for the complete integral. In this
case, the standard deviation of the separately integrated
and summed integrals is bigger by a factor of

√
n than the

standard deviation of the complete integral [63, 64].

7 Conclusions

Using the parallel/orthogonal space method, we have elab-
orated on a newmethod to calculate the planar and rotated
reduced planar ladder two-loop three-point diagrams in
the general massive case. Our method does not depend on
a specific physical decay process but is suitable to calcu-
late all planar two-loop vertex diagrams which may arise
in the Standard Model of electroweak interactions using
Feynman gauge.
We have presented a tensor reduction which reduces

the mentioned topologies with arbitrary tensor structure
to a set of master integrals with strongly restricted, well-
defined numerator structure. We have developed and im-
plemented an algorithm for the semi-analytical calcula-
tion of the UV-finite part of those master integrals which
still have the mentioned topologies after tensor reduction.
While six of the eight integrations are done analytically, for
the remaining two integrations we used different numerical
methods.
The integration of the UV-finite part of the important

master integrals was checked exhaustively in the limit of
vanishing subtraction parameters by comparing the semi-
analytical calculation with the results of a numerical inte-
gration. As the final step of the semi-analytical calculation,
the numerical integration turns out to be stable, i.e. one
obtains the same result as for the above-mentioned limit.
This is valid especially in the case where the numerical in-
tegration is not done for each master integral separately
but for the sum of all analytical results necessary for the
given process.
For the remaining master integrals and subtraction

terms with simpler topologies there exist other methods. In
part, these methods are already implemented in xloops.
Therefore, in writing links to existing codes, these cases



176 S. Groote, M.M. Knodel: Evaluating massive planar two-loop tensor vertex integrals

Fig. 13. Real part (top) and imaginary part
(bottom) of the integral Vex as a function of
the mass parameter m0 of the subtraction
masses for the decay mass value on the two-
particle threshold at M =

√
p2 = 500 GeV.

The integral Vex is the sum of the UV-finite
parts of the master integrals corresponding
to Tex in (109), which after tensor reduction
keep the planar and rotated reduced planar
topology. Shown are the results for separated
(left-hand side) and combined numerical inte-
gration (right-hand side) with VEGAS

can easily be implemented in our calculations. The still-
missing topologies are the two-loop three-point topologies
containing a two-point subloop. These parts still have to
be implemented [24, 25]. After having done this, we will be
able to evaluate semi-analytically all IR-finite NNLO cor-
rections containing planar two-loop vertex topologies as
they arise in the Standard Model.
Finally, because the calculation of the scalar integrals

for the non-planar two-loop vertex function [54] is quite
similar to the calculation of the scalar integrals for the
planar two-loop vertex function [34], our algorithm is ex-
pected to be easily extendable to the non-planar two-loop
vertex topology. Having extended our algorithm in this
direction, we are then able to calculate all NNLO vertex
corrections as they arise in the Standard Model.
As far as possible, the computer codes written in the

course of this paper are developed and implemented for
most general decay processes. Because of this, we plan to
include our calculations in the xloops project in the near
future.
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Appendix : Integral basis

In this appendix we list the analytical results for the basic
integrals in (90) in terms of the parameters rs, rt, r0, s0,
and t0. In order to calculate these integrals, we introduce
cutoffs Λs and Λt. The results depending on these cutoffs
are extremely long and contain products of two logarithms
as well as dilogarithms [62]. However, one can show that
these divergences cancel in the sums in (67) and (88). In
order to make the reader familiar with these features, we
explain the calculation for the simplest example.

A.1 The integral Fst0,0

The regularized integral is given by

Fst0,0 =

∫ Λt

0

dt

∫ Λs

0

ds
1

∗
√
(r0− rss− rtt+iη)2−4st

=−
Λt

rs
ln

∣
∣
∣
∣
rsr0+(2− rsrt)Λt− r2sΛs− rsΛ

2(rsr0+(1− rsrt)Λt)

∣
∣
∣
∣

−
Λs

rt
ln

∣
∣
∣
∣
rtr0+(2− rsrt)Λs− r2tΛt− rtΛ

2(rtr0+(1− rsrt)Λs)

∣
∣
∣
∣

+
r0

1− rsrt

(

ln

∣
∣
∣
∣Λt+

rsr0

1− rsrt

∣
∣
∣
∣+ln

∣
∣
∣
∣Λs+

rtr0

1− rsrt

∣
∣
∣
∣

+iπθ(r0)− ln
∣
∣r0(1+ rsrt)

+ (1− rsrt)(rsΛs+ rtΛt+Λ)
∣
∣− ln

∣
∣
∣
∣

r0

2(1− rsrt)2

∣
∣
∣
∣

)

,

(A.1)
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where

Λ :=
√
(r0− rsΛs− rtΛt)2−4ΛsΛt. (A.2)

What to do with the singularity? As a first step we can
separate the divergent part, which depends on Λs, Λt, and
Λ, from the convergent part. But how does the divergent
part cancel? If we look at (88) where Fst0,0 appears, we see
that it actually appears as part of a sum. If we concen-
trate on the summation over n and consider howN k1,i,a and
N k2,i,a are defined in (53) and (54), and if we take into ac-
count that P2,j

∣
∣
P1,j
= ξ2,j− ξ1,j = −P1,j

∣
∣
P2,j
, we see that

N k1,i,a = −N
k
2,i,a. The same is valid for N

l
x,j,b and N

l
6,j,b,

i.e. N lx,j,b =−N
l
6,j,b. Therefore, an expression which is of

relevance for the subtracted integrals is the sum

2∑

n=1

∑

m=x,6

(−1)n+mFst0,0(rs, rt, rn,i,m,j). (A.3)

In replacing Λs by Λ
0
s/εΛ and Λt by Λ

0
t/εΛ with εΛ� 1

with arbitrary but positive and fixed values Λ0s and Λ
0
t , we

indeed can show that

2∑

n=1

∑

m=x,6

(−1)n+mFst,div0,0 (rs, rt, rn,i,m,j) =O(εΛ). (A.4)

For εΛ→ 0, therefore, the divergent part will cancel in the
difference. We only have to consider the convergent part

Fst,conv0,0 =
r0

1− rsrt

(

iπθ(r0)− ln

∣
∣
∣
∣

r0

2(1− rsrt)2

∣
∣
∣
∣

)

. (A.5)

Finally, we see that

2∑

n=1

∑

m=x,6

(−1)n+mrn,i,m,j →
±2

θ0

∑

m=x,6

(ξ1,i− ξ2,i) = 0

(A.6)

(cf. (91) including remarks given there). Therefore, we can
skip all terms which are linear in r0. The result which we
have to implement is

Fst,impl0,0 =
r0

1− rsrt
(iπθ(r0)− ln |r0|) . (A.7)

In the following we will only give results which are to be im-
plemented. For the integrals with one index we will show
only results for Fsα. Results for F

t
β can easily be obtained

by replacing s0↔ t0 and rs↔ rt.
The integral Fst0,0 is used for illustrative reasons only.

It does not appear in calculations because the integration
region vanishes. The same is valid for the integrals Fsti,j .
Therefore, it turns out that the integrals Fsα and F

t
β are

sufficient for calculations within the Standard Model of
electroweak interactions using Feynman gauge.

A.2 The integrals Fsα

rsF
s,impl
0 =−Re

(

Li2

(

1+
rsr0

t0(1− rsrt)

))

− iπ

{

θ(r0) ln

∣
∣
∣
∣1+

rsr0

t0(1− rsrt)

∣
∣
∣
∣

− θ(t0) ln

∣
∣
∣
∣t0+

rsr0

1− rsrt

∣
∣
∣
∣

}

(A.8)

r3sF
s,impl
1 =−(2− rsrt)

{
rsr0

1− rsrt
ln |r0|

+

(

t0+
rsr0

2− rsrt

)

Re

(

Li2

(

1+
rsr0

t0(1− rsrt)

))}

+iπ

{

(2− rsrt)θ(r0)

(
rsr0

1− rsrt

−

(

t0+
rsr0

2− rsrt

)

ln

∣
∣
∣
∣1+

rsr0

t0(1− rsrt)

∣
∣
∣
∣

)

+((2− rsrt)t0+ rsr0) θ(t0) ln

∣
∣
∣
∣t0+

rsr0

1− rsrt

∣
∣
∣
∣

}

(A.9)

r5sF
s,impl
2 =

{
1

2

(
rsr0

1− rsrt

)2
(6−6rsrt+ r

2
sr
2
t )

−
rsr0

1− rsrt

(
(6−6rsrt+ r

2
sr
2
t )t0

+2(3− rsrt)rsr0
)
}

ln |r0|

−
(
(6−6rsrt+ r

2
sr
2
t )t
2
0+2(3− rsrt)rsr0t0

+ r2sr
2
0

)
Re

(

Li2

(

1+
rsr0

t0(1− rsrt)

))

− iπ

{

θ(r0)
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1

2

(
rsr0
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2
sr
2
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(A.10)
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